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Abstract

An explicit unified form of boundary conditions for a periodic representative volume element (RVE) is presented
which satisfies the periodicity conditions, and is suitable for any combination of multiaxial loads. Starting from a simple
2-D example, we demonstrate that the “homogeneous boundary conditions” are not only over-constrained but they
may also violate the boundary traction periodicity conditions. Subsequently, the proposed method is applied to: (a) the
simultaneous prediction of nine elastic constants of a unidirectional laminate by applying multiaxial loads to a cubic
unit cell model; (b) the prediction of in-plane elastic moduli for [+6)], angle-ply laminates. To facilitate the analysis, a
meso/micro rhombohedral RVE model has been developed for the [+0], angle-ply laminates. The results obtained are in
good agreement with the available theoretical and experimental results.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Composite materials are becoming an essential part of present engineered materials because they offer
advantages such as higher specific stiffness and strength, better fatigue strength and improved corrosion-
resistance compared to conventional materials. They are used in various applications ranging from aero-
space structures to sports equipment, electronic packaging, medical tools, and civil engineering structures.
Consequently, prediction of the mechanical properties of the composites has been an active research area
for several decades. Except for the experimental studies, either micro- or macromechanical methods are
used to obtain the overall properties of composites.

Micromechanical method provides overall behavior of the composites from known properties of their
constituents (fiber and matrix) through an analysis of a periodic representative volume element (RVE) or a
unit-cell model (Aboudi, 1991; Nemat-Nasser and Hori, 1993). In the macromechanical approach, on the
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other hand, the heterogencous structure of the composite is replaced by a homogeneous medium with
anisotropic properties. The advantage of the micromechanical approach is not only the global properties of
the composites but also various mechanisms such as damage initiation and propagation, can be studied
through the analysis (Xia et al., 2000; Ellyin et al., 2002).

There are several micromechanical methods used for the analysis and prediction of the overall behavior
of composite materials. In particular, upper and lower bounds for elastic moduli have been derived using
energy variational principles, and closed-form analytical expressions have been obtained (Hashin and
Shtrikman, 1963; Hashin and Rosen, 1964). Based on an energy balance approach with the aid of elasticity
theory, Whitney and Riley (1966) obtained closed-form analytical expressions for a composite’s elastic
moduli. Unfortunately, the generalization of this method to viscoelastic, elastoplastic and nonlinear
composites is very difficult. Aboudi (1991) has developed a unified micromechanical theory based on the
study of interacting periodic cells, and it was used to predict the overall behavior of composite materials
both for elastic and inelastic constituents. In his work, homogeneous boundary conditions were applied to
the RVE or unit cell models. In fact, this is only valid for those cases in which normal tractions are applied
on the boundaries. For a shear loading case, many researchers, ¢.g., Needleman and Tvergaard (1993), Sun
and Vaidya (1996), Suquet (1987), among others, have indicated that the ‘plane-remains-plane’ bound-
ary conditions are over-constrained boundary conditions. In the current paper we shall further demon-
strate that they are not only over-constrained boundary conditions but may also violate the stress/strain
periodicity conditions.

The above micromechanical models can be regarded as mechanical or engineering models. A mathe-
matical counterpart to such engineering methods appeared in the 1970s under the general heading of the
‘asymptotic homogenization theory’. The fundamentals of this theory can be found, e.g. in Suquet (1987),
Benssousan et al. (1978), Sanchez-Palencia (1980), and Bakhvalov and Panasenko (1984), among others.
Asymptotic homogenization theory has explicitly used periodic boundary conditions in modeling of linear
and nonlinear composite materials. These results have clearly shown that characteristic modes of defor-
mation do not result in plane boundaries after deformation (Suquet, 1987). Guedes and Kikuchi (1991)
discussed the application of finite element method (FEM) to composite problems. Recent applications of
homogenization theory for various aspects of composite analysis are given, for instance, in Raghavan et al.
(2001) and Moorthy and Ghosh (1998).

Hori and Nemat-Nasser (1999) presented a universal inequalities which indicate that the predicted ef-
fective elastic modulus can vary depending on the applied conditions on the boundary 0V of a unit cell, and
the homogeneous displacement and homogeneous traction boundary conditions will give the upper and
lower bounds of the effective modulus. Hollister and Kikuchi (1992) have given a very good comparison of
the homogenization theory and the mechanical methods (it is called average field theory in Hori and
Nemat-Nasser (1999)), concluding that the homogenization theory, which uses the periodic boundary
conditions, yields more accurate results. It is shown that the homogenization theory and mechanical
methods can be related to each other and a more applicable hybrid theory was established (Hollister and
Kikuchi, 1992).

FEM has been extensively used in the literature to analyze a periodic unit cell, to determine the me-
chanical properties and damage mechanisms of composites (Adams and Crane, 1984; Aboudi, 1990; Allen
and Boyd, 1993; Bonora et al., 1994; Pindera and Aboudi, 1998). In most cases, the applications are limited
to the unidirectional laminates. A few investigators have also applied the micromechanical analysis to the
cross-ply laminates (laminates contain only 0° and 90° laminae), for which the thermal residual stresses,
crack initiation and propagation, viscoplastic or viscoelastic behaviors have been studied (Xia et al., 2000;
Ellyin et al., 2002; Bigelow, 1993; Chen et al., 2001).

In the present paper the FEM micromechanical analysis method is applied to unidirectional and angle-
ply laminates subject to multiaxial loading conditions. For the latter laminates, special meso/micro rhombo-
hedral RVE models have been developed. Based on general periodicity conditions stated by Suquet (1987),
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an explicit form of boundary conditions suitable for FEM analyses of parallelepiped RVE models subjected
to multiaxial loads is presented. Starting from a simple 2-D example, the results of the present method and
those obtained by applying homogeneous boundary conditions are compared. Subsequently, the FEM
analyses are conducted for two composite RVE models: (1) a unidirectional laminate to predict simulta-
neously all nine elastic constants by applying multiaxial loads; (2) a thick [+6] angle-ply laminate to
predict simultaneously the four in-plane elastic moduli by applying biaxial loads. The predicted properties
are compared with available theoretical or experimental results and are found to be in very good agreement.
Although the illustrative analyses presented in the current paper are limited to the elastic range, the basic
relations proposed in this paper are independent of the properties of the constituents of the composite.

2. Representative volume elements for unidirectional and angle-ply laminates

The micromechanical model is set up based on the periodic RVE technique. For the continuous fiber
reinforced composites, it is assumed that fibers are uniformly distributed in the matrix and have the same
radii. Therefore, each unidirectional layer could be represented by a unit cube with a single fiber having the
same fiber volume fraction as the ply, see Fig. 1. Instead of the square layout of fibers reflected by this RVE
model, the square-diagonal or hexagonal RVE models have also been used (Li, 1999).

Fig. 2 indicates the manner in which a RVE is developed for a thick angle-ply [+0], laminate. From the
periodicity of the fiber array, we can cut a rhombohedral RVE consisting of two layers, each with a single

Unidirectional RVE
Laminate

Fig. 1. A representative volume element for a unidirectional laminate.

(a) Angle-ply Laminate (b) RVE
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Fig. 2. A representative volume element for an [+0] angle-ply laminate.
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Fig. 3. The two coordinate systems.

fiber in the direction 40 and —0, respectively. The angle-ply laminate can thus be seen as a periodical array
of this unit cell.

It should be noted that in Fig. 2, the angle 6 is measured from X axis (if measured from the Y axis, it will
be 90° — 0), therefore this model can also be seen as a RVE for the [+(90 — 0)], laminates. For example, the
RVE:s for the [+30], laminates and the [£60], laminates are the same.

To facilitate the analysis, a skew coordinate system as shown in Fig. 3, is introduced. We denote this
skew coordinate system as O-X,Y,Z,, with the same origin as that of the orthogonal coordinate system O—
XYZ, and the axes X;, Y; are parallel to the fiber directions (direction of +60). In this system, the coordinates
and the displacement components are designated as (x;, ys, z,), and (uy, s, ), respectively. From Fig. 3,
we can obtain the transformation between the two coordinate systems as follows:

X sinf —cos@ 0 X
Y0 = G20 sinff  cosf .0 v (1)
Zg 0 0 sin 20 z
Uy sinf —cos@ 0 U,

= i 2
Uy oo | St 0 cosO . 0 u, (2)
Uz 0 0 sin 26 u,

Referring to Fig. 2(b), we assume that S is the area of side surface (ABCD), ¢ is the length of the side AB,
h is the height of the RVE (AD), S; is the area of the cross section (AEFB), the volume of the RVE is ¥/, the
fiber volume fraction is ¥; and R is the radius of the fiber. The following relations between these geometric
parameters can be obtained:

h =2¢sin20
S; = (*sin 20
S = 2¢*sin 20

V = 203 sin® 20

R = ZsinZtﬁ)\/E
T
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3. Unified periodic boundary conditions for parallelepipedal RVE under multiaxial loading

Composite materials can be envisaged as a periodical array of the RVEs. Therefore, the periodic
boundary conditions must be applied to the RVE models. This implies that each RVE in the composite has
the same deformation mode and there is no separation or overlap between the neighboring RVEs. As stated
by Suquet (1987), these periodicity conditions on the boundary 0V is

u; = &xXp +u;, u; periodic (4)

In the above &, are the average strains, u; is the periodic part of the displacement components on the
boundary surfaces and it is generally unknown and is dependent on the applied global loads. A more
explicit form of periodic boundary conditions, suitable for parallelepiped RVE models can be derived from
the above general expression.

For a cubic RVE as shown in Fig. 1, the displacements on a pair of opposite boundary surfaces (with
their normals along the X; axis) are

u" = ] ()

1/[{7 = E,-kxf + M;k (6)
where index ““j+” means along the positive X; direction and “j—"" means along the negative X, direction.
The difference between the above two equations is

1/[{-+ — M_ = E,-k(x,]j— — x;c_) = EIAAX‘]/( (7)

1 1

For any parallelepiped RVE models M is constant, therefore the following unified periodic boundary
conditions is obtained:
uﬁ(x,y,z)f://*(x,y,z) :CJ (17J: 13233) (8)

1 1

The constants, ¢}, ¢3 and c3, represent the average stretch or contraction of the RVE model due to the
action of the three normal traction components, whereas the other three pairs of constants, ¢ = ¢j, ¢; = ¢}
and ¢3 = ¢3, correspond to the shear deformations due to the three shear traction components. This form of
boundary conditions meets the requirement of displacement periodicity and continuity. It can be seen from
Eq. (8) that although the difference of the displacements for the corresponding points on the two opposite
boundary surfaces are specified, the individual displacement component is still a function of the coordi-
nates, i.e. a plane does not necessarily remain a plane after the deformation. Also since Eq. (8) does not
contain the periodic part of the displacement, which is unknown, it becomes easier to adopt this form in a
finite element procedure, instead of applying (4) directly as the boundary conditions.

It is assumed that the average mechanical properties of a RVE are equal to the average properties of the
particular composite laminate. The average stresses and strains in a RVE are defined by

1
Eij 217 /VS,‘]'dV (9)

6',*/:%/1/0'1:/'(1[/ (10)

where V is the volume of the periodic representative volume element.

The strain energies predicted by the different boundary conditions must satisfy the following inequality if
the average strain g; for each case is assumed to be the same (Suquet, 1987; Hori and Nemat-Nasser, 1999;
Hollister and Kikuchi, 1992):
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where U*, U”, UF are the strain energy predicted by homogeneous traction boundary conditions, periodic
boundary conditions, and homogeneous displacement boundary conditions, respectively. It is clear that the
homogeneous displacement boundary conditions overestimate the effective moduli whereas the homo-
geneous traction boundary conditions underestimate the effective moduli. It should also be pointed out
that the application of the homogeneous displacement boundary conditions generally would not guarantee
to produce a periodic boundary traction. Similarly, the application of the homogeneous traction boundary
conditions would not guarantee the displacement periodicity at the boundaries.

The calculation of average strain and stress can be simplified by using Gauss’s theorem. The average
strain in the RVE can be expressed as an integration around the boundary surfaces (Aboudi, 1991; Sun and
Vaidya, 1996; Suquet, 1987)

1 1

Since all the boundary surfaces in Fig. 1 are perpendicular to one of the coordinate axis, the unit normal
vector n has only one non-zero component on these surfaces with a value of unity. Therefore, using the
symbols defined in Eq. (8), the above integration can be reduced to

- 1 i - i . . 1 . i . C{A)C,A.x;{ + C;AXJAX/C
gij—ﬁ /S/(”{ —u )”de‘F/S_(”j —”_j' )”idsl _ﬁ(dsj_FCjSi)_ 2AxAx;Ax;
Therefore,
_ 1A+ Ay
YT AvAy, )

Note that the suffixes i and j in the above expressions are not dummy ones.
Likewise, by using the Gauss theorem and equilibrium equation o;;; = 0, the average stress can be ex-
pressed as (Aboudi, 1991; Suquet, 1987)

1
Eij :V /SU,'kande (14)

If one assumed that the stress distributions at the boundaries must also satisfy the periodicity condition,
then at the two corresponding points on the two opposite planes (with same in-plane coordinates) must
have the same normal and shear stresses. By a similar procedure as in the derivation of (13), Eq. (14)

reduced to
G = 1 /o-kxnde = 1 / a.*x.*dS—/ o, x;dS | = 1 / o (xI —x7)dS
7] vV s Laad) 1% S;; im”j 5 im™j V S; im\"j J

In the above the suffix m is a dummy suffix. However, when m # j, the coordinates x; = x; and when m = j,
x; —x; = Ax;, therefore,

Ax; Py :
Gy = 7’ /s 0,;dS = ?/ (no summation over j) (15)

J

The above equation indicates that the average stresses can be simply obtained from the resultant tractions
on the boundary surfaces by dividing them by the areas of the corresponding boundary surfaces.

For angle-ply laminates, the unified boundary conditions, Eq. (8) should be written in the skew coor-
dinate system, O-X,Y,Z,, i.c.
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u;:(xan’mZS) — s (X, Y, 2) = €] (16)
In the above equation, all indices have the same meaning as in Eq. (8) except that they are now defined in
the skew coordinate system.

If only in-plane loads are considered (¢] = ¢} = ¢3 = ¢5 = 0) and by using the relation between the dis-
placement components in the skew coordinate system and in the orthogonal O-XYZ coordinates, Egs. (1)
and (2), the displacement boundary conditions in the O-XYZ coordinates can be written as (note that the
coordinates are expressed in the skew coordinate system in the following equations for clarity):

On planes ABCD (x, = Ax,) and EFGH (x, = 0):

[t (Axs, Y5, 2) — e (0,35, 2,)] sin 0 — [, (Axy, 5, z,) — u, (0, yy, 2,)] cos 0 = ¢} sin 20
[, (Axs, 5, 2) — 1, (0, 5, 2,)] €08 0 + [, (Axs, ys, 25) — (0,15, 2,)] sin 0 = ¢} sin 20 (17)
uz(Axg, yy, 20) = u:(0, 3y, 24)
On planes ADHE (y, = Ay,) and BCGF (y, = 0):
(14, (%5, AYy, 24) — 1 (s, 0, 2,)] 810 0 — [, (x,, Ay, Z5) — 1 (X, 0, 2,)] cos 0 = ¢ sin 20
(14, (%5, AYy, 2) — (x5, 0, 2)] €08 0 + [t (x5, Ay, 2,) — 1 (x5, 0,2,)] sin 0 = ¢3 sin 20 (18)
u (x5, Ay, z,) = u.(x,, 0, zy)
On planes BAEF (z, = Az,) and CDHG (z, = 0):
[ (X, Yy, Azg) — u (x5, Y5, 0)] sin 0 — [0, (3, Y5, Azy) — 1, (x4, 5, 0)] cos 0 = 0
[ty (X, Vs, Azg) — 1y (X, 15, 0)] €08 0 + [1t (X, V5, Azg) — ty (x5, 15, 0)] cos 6 = 0 (19)
u(xg,5,0) =0
u.(x,, )5, Azy) = c3 = const.

Note that for the in-plane loading case, the constant cj is not required to be specified. Its value will be
obtained through the FEM analysis. To eliminate the rigid body motion, the displacement components,
uy,u, of the center point of the RVE are assumed to be zero.

To apply Egs. (17)-(19) in the FEM analysis, the mesh in opposite boundary surfaces should be same.
For each pair of displacement component at the two corresponding nodes with identical in-plane coor-
dinates on the two boundary surfaces a constraint equation is imposed. Although a large number of the
constraint equations needs to be applied, it is usually easy to produce all those equations by using certain
automatic schemes embedded in a FEM package.

Based on definitions of the average strain and stress, Egs. (9) and (10), using the similar procedures as in
the derivations of Egs. (13) and (15), and noting the geometric description of the RVE given by Egs. (3), a
relation between the average strains and the constants ¢/, and the average stresses and resultant tractions on
the boundary surfaces are found as follows:

1
& =5 (e + 26 + 63)

21
1
g, = 3 (e} =22 +¢3)
&y = L (2 —ch 20
Y Isin20° !

3
=3

& 7
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PAB +PAE
7T T sin g
AE _ pDAB

7 _AT A" (21)
7 2Scos 0

P g B
O’x = = -
Y 2Scos 0 28sin 0

In Eqs. (21) P, and P, are the resultant tractions on the boundary surface which can be obtained directly
from the FEA solutions.

4. Application examples
4.1. A 2-D illustrative example

To verify the unified boundary conditions, Egs. (8), and the difference with the “homogeneous boundary
conditions” (or plan-remains-plane boundary conditions), a 2-dimensional RVE model is considered. The
model consists of a fiber reinforcement and matrix, with a volume fraction of 50%, Fig. 4. The elastic
moduli and Poisson’s ratio for the fiber and matrix are E; = 72,500 MPa, v, = 0.22 and E,, = 2600 MPa,
vm = 0.40, respectively. For a pure shear deformation mode we apply the following two different sets of
boundary conditions to the RVE model:

(a) Periodic boundary conditions, Egs. (8):
UAB — UEF — 07 UAB — Vg = 0.0018
UAE — UBF = 00018, UVAE — UBr = 0 (22)
up =vp =0 (to eliminate the rigid body motion)

where u and v are displacement components along X and Y, respectively.

(b) Homogeneous boundary conditions:
The following homogeneous boundary conditions were suggested by Aboudi (1991) to be applied to the
boundary surface S of a representative volume element V:

7,, =6.731MPa
E

3.681

10.188
16.696
23.203
29.71

36.217
42.725
49.232
55.739
62.247

IRREROCRO

(a) (b)

Fig. 4. Deformed shape and shear stress distribution of a two dimensional RVE model with different applied boundary conditions:
(a) Eq. (22); (b) Eq. (24) (dashed lines show the undeformed shape).
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0
Ll,(S) = 81:/-Xj (23)

where s?j is the average strain (Eq. (1.35) in Aboudi, 1991).
For the current example, the above equation reduces to

uag = 0.0018yap, ugr = 0.0018ygp
vag = 0.0018x4p = 0.0018, wvgr = 0.0018xgr =0
uag = 0.0018y,g = 0.0018, ugr = 0.0018ysr =0
vag = 0.0018x4g, vgr = 0.0018xgr

(24)

Note that the origin of the coordinate system is set at the point F of the square RVE and the above
boundary conditions specify that all displacement components are linearly distributed at the boundaries,
i.e. a plane-remains-plane.

4.1.1. Results of finite element analysis
Case (a). The deformed shape for this case is shown in Fig. 4(a). One notes that the boundaries do not
remain planes after the deformation. The resultant tractions at the boundaries are

at AE and BF: Nyx = £6.4831, Nyy =0; at AB and EF: Nxx =0, Nxy = £6.4831

Further examination of the stress distribution indicates that at all boundaries the normal stress com-
ponents are zero and the shear stresses are uniform in the whole body as shown in Fig. 4b, i.e. the RVE is
subject to a pure shear load. In addition, not only the displacements but also the stress distributions along
the boundaries satisfy the periodic conditions. Therefore, the average shear strain and the average shear
stress can be calculated from Eqs. (13) and (15) resulting in y = 2g,, = 0.0036 and T = 7,, = 6.4831 MPa,
respectively, and the equivalent shear modulus is G = 1801 MPa.

Case (b). The deformed shape is shown in Fig. 4(b). The boundary lines remain straight lines. Therefore,
the displacement periodicity is satisfied but it is an over-constrained condition in comparison with the
results in Fig. 4(a). Now let us look at the resultant forces and moments at the boundaries. They are

At AE and BF: Nyx = £24.335, Nyy = 0, M; = 10.3494
At AB and EF: Nxx =0, Nxy = £4.5963, M, = 0.4807

Note that in this case the resultant shear forces at the boundaries AE and AB are not equal. This in-
dicates that the unit cell is not subject to a pure shear force and other forces (moments) must be applied to
the boundaries in order to maintain force and moment equilibrium, see Fig. 5(a). Fig. 5(a) and (b) also
show the distributions of stress components o, and a,, respectively. It is seen that the o, and g, give rise to
boundary moments M, and M, to ensure that the unit cell as a whole is in equilibrium. However, the normal
traction at the corresponding points on the opposite sides have opposite signs; one is in tension while the
other in compression as seen in Fig. 5(b) at points C and D. This implies that the traction distribution at the
corresponding opposite boundaries does not satisfy the periodic condition and as such a “RVE” model
cannot be arranged in a periodic array to represent a composite material. Accordingly, it is clear that the
“homogeneous displacement boundary conditions” are not appropriate boundary conditions for the RVE
of composite materials subject to a shear load.

The average shear strain and the average shear stress in this case are 7 = 282}, =0.0036 and
T =0, = 24.972 MPa, respectively, and the equivalent shear modulus is G = 6937 MPa. We can see that
the homogeneous displacement boundary condition does greatly overestimate the modulus.
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Fig. 5. Resultant boundary forces and distribution of stress components by applying homogeneous boundary conditions: (a) distri-
bution of g,; (b) distribution of ag,.

4.2. Prediction of the elastic constants of a unidirectional laminate

The unidirectional laminate is assumed to be orthotropic and linearly elastic. In a matrix notation form,
the constitutive relation of this effective material can be written as

(] = [S][a] (25)
where [S] is the compliance matrix,

Su S Sz 00
Sp S» Ss 00
Si3 S3 S 0000
0 0 0 Sy O
0 0 0 0 S O
0 0 0 0 0 Sg

After obtaining the &, and &; for given ¢/ from Eqgs. (13) and (15) of a RVE, the S;; can be obtained from
(31). The relation between the engineering elastic constants and S;; are

S o oo

[S] = (26)

1 S12 1
E = — L L
T T
1 Si3 1
o L 27
2 S»y V13 S, 13 254 ( )
1 S»3 1
Eym— vy= -2 Gpy——
SO ' Sn 0T 28

It should be noted that for a general orthotropic material, nine independent material constants must be
determined. However, Eq. (26) contains only six equations; thus two sets of solutions are required. Note
that the last three equations will result in the same moduli for the two sets of solutions. Thus, in total there
are nine independent equations for nine independent material constants. All the nine constants are,
therefore, determined by solving the nine equations. For a large scale problem, it is not feasible to un-
dertake a full micromechanical simulation, instead, approaches called ‘macro—micro’ analysis are frequently
used, whereby for a large composite structure, the micromechanical method is firstly used to predict the
elastic constants of the representative points or regions of the composite structure (Moorthy and Ghosh,
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Fig. 6. (a) The finite element mesh of the RVE model for the unidirectional laminate; (b) deformed shape under shear.

1998). Thus, an efficient method of predicting elastic constants will make the macro-micro simulations
more successful.

The RVE model in Fig. 1 is meshed with three-dimensional eight-node hexahedral elements. The finite
element mesh is constructed with 1881 nodes and 1536 brick elements for the unidirectional RVE (Fig. 6).

The mesh grids in the opposite surfaces of the rectangular RVE are the same, i.e., the number of nodes in
the opposite surfaces are equal, and the corresponding nodes on the two surfaces have the same coordinates
in their plane. For example, the nodes in the plane of x = 0 and x = 1 can be related in pairs with the same
v,z coordinates. This provides a considerable convenience in the implementation of the periodic boundary
constraints as expressed by Eq. (8).

In this study, the unidirectional composite laminate is composed of aluminum matrix and boron fiber
(model 1, shown in Fig. 1) and the angle-ply laminate is made of E-glass fiber and epoxy matrix (model 2,
shown in Fig. 2). All the constituent materials are assumed to be isotropic elastic but with different material
properties. Table 1 indicates the materials properties used in the calculations. The fiber volume fractions of
the unidirectional lamina and angle-ply laminates are 47% and 52.5%, respectively.

The following two sets of ¢/ are used in the calculation of the unidirectional laminate model
(Ax=Ay=Az=1):

Table 1

Material properties of fiber and matrix (Ellyin et al., 2002; Sun and Vaidya, 1996)
Material E (MPa) v
Boron 3.793 x 10° 0.1
Aluminum 6.83 x 10* 0.3
E-glass 7.25 x 10* 0.22
Epoxy 2.6 x 103 0.4

Table 2

Results and comparison for unidirectional boron/aluminum laminate (¥; = 0.47)

Elastic Present Sun and Sun and Chamis Whitney and Hashin and Test data Kenaga
constants Vaidya (1996) Chen (1991)  (1984) Riley (1966) Rosen (1964) et al. (1987)

E, (GPa) 214 215 214 214 215 215 216

E, (GPa) 143 144 135 156 123 135.2 140

G2 (GPa) 54.2 57.2 51.1 62.6 53.9 53.9 52

G (GPa) 45.7 459 - 43.6 - 523 -

Vi2 0.195 0.19 0.19 0.20 0.19 0.195 0.29

V23 0.253 0.29 - 0.31 - 0.295 -
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Set 1: ¢} = = ¢} =0.012, ¢/ = 0.016 (i # j), Set 2: ¢! = 3 = 0.018 all other ¢ = 0.

The predicted elastic properties of the unidirectional boron/aluminum laminate (E; = E,, Gj3 = Gy, and
vi3 = v12) and a comparison with the numerical, analytical and the available experimental data are given in
Table 2. It is to be noted that the analytical results of Hashin and Rosen (1964), based on energy variational
principles, provide bounds for the elastic moduli, and the average values are used in the table.

It is seen from examining Table 2 that the predicted properties are generally in good agreement with the
results in the literature, and the experimental values.

The deformed shape of the RVE under an applied pure shear periodical displacement boundary con-
dition, ¢ = ¢ = 0.016, and all other ¢/ =0, is shown in Fig. 6b. It is seen that the deformed boundary
surfaces no longer remain planes.

4.3. Prediction of in-plane moduli for angle-ply laminates

Fig. 7 shows the meshed RVEs for +15° (£75°) and 4+30° (+£60°) laminates, each having 3681 nodes and
3072 elements.

From the microstructure of the laminate, it is reasonable to assume that the laminate is orthotropic in the
sense of overall response, i.e., for average stresses and average strains, we have

.\\‘\\\}

(a) (b)
Fig. 7. Meshed RVE for angle-ply laminates (a) meshed RVE for £15° (£75°); (b) meshed RVE for +30° (+£60°).
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Fig. 8. E,—0 curves for angle-ply laminates.
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& Si S 0 [
5 b=, s» 0! (28)
Exy 0 0 S66 Exy

In a manner similar to that described in Section 4.2 above, two sets of ¢}, ¢3, ¢? are specified to obtain the
elastic constants in (28). The in-plane elastic moduli can be obtained from

1 1 Siz 1

E’C:— E Vyy = and ny:

B, L 29
S T S» ’ T 2866 29)

Figs. 8 and 9 show the predicted E, and G,, for angle-ply laminates with varying angles and a comparison
with the results obtained by using the classical laminate theory (CLT). The lamina properties used in the
CLT calculations are taken from experimental data (Hoover, 1999) and are given in Table 3.

From Figs. 8 and 9, it is seen that the differences between the results of the CLT and the present
micromechanical model are rather small. And from the limited experiment points (Ellyin and Kujawski,
1995; 3M Minnesota Mining & Manufacturing Co.), it seems that the present micromechanical results are
in good agreement with the experimental data. Note that the micromechanical results are based on the
properties of the two constituents (fiber and matrix, Table 1), while the CLT results are based on the global
properties of lamina, Table 3.
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10 4 O O

Gxy(GPa)

T T — T - T T T T T 1T T 1T T 1
0 10 20 30 40 50 60 70 80 90

Orientation (Degree)

Fig. 9. G,,—0 curves for angle-ply laminates.

Table 3
Elastic properties for unidirectional E-glass/epoxy lamina (Hoover, 1999)
Property E-glass/epoxy lamina (3M-1003)
E, (GPa) 41.7
E; (GPa) 13.0
Vi2 0.3

G (GPa) 34




1920 Z. Xia et al. | International Journal of Solids and Structures 40 (2003) 1907-1921

5. Conclusions
The following conclusions are drawn from the present study:

1. An explicit unified form of boundary conditions for a parallelepiped-shaped periodic RVE model is pre-
sented which satisfy the periodicity conditions and are suitable for any combination of multiaxial loads.

2. The “homogeneous boundary conditions” (plane-remains-plane) are not only over-constrained condi-
tions but they may also violate the stress periodicity conditions. Thus, they cannot be used to represent
periodical structures of the composite laminae or laminates under loading conditions with shear compo-
nents.

3. The proposed unified boundary conditions satisfy not only the boundary displacement periodicity but
also boundary traction periodicity of the RVE model and as such represent periodical structures of
the composite laminae or laminates under general multiaxial loading condition.

4. A meso/micro-mechanical RVE model has been developed for any angle-ply laminates.

5. A method to evaluate the average stresses and strains has been derived based on the applied boundary
conditions and the resultant forces at the boundaries. By applying two sets of values of the proposed
boundary conditions, all elastic moduli for the unidirectional or angle-ply laminates can be predicted
simultaneously. The predicted results are in good agreement with the results available in the literature,
and the experimental data.

6. The basic relations proposed in this paper do not depend on the properties of the constituent materials
of a composite. Therefore, they can also be applied to nonlinear micromechanical analysis of the com-
posites under multiaxial loads. However, all the derived equations in this paper are based on small de-
formation theory.
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